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This paper addresses issues related to weights and acceptance rates in generalized ensemble simulations,
while comparing two algorithms: serial �e.g., simulated tempering or expanded ensemble method� and parallel
�e.g., parallel tempering or replica exchange�. We derive a cumulant approximation for weights and discuss its
effectiveness in practical applications. We compare the acceptance rates of the serial and parallel algorithms
and prove that the serial algorithm always has higher acceptance rates. The duality between forward and
backward transitions plays a crucial role in the derivations throughout the paper.
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I. INTRODUCTION

Computer simulation, such as molecular dynamics and
Monte Carlo, is a powerful technique for studying complex
systems. However, simulations of complex systems are often
hindered by trapping in local energy minima and slow relax-
ations. One method to overcome this difficulty is simulated
tempering �1,2�, which attempts to reduce relaxation times at
low temperatures by repeatedly heating and cooling the sys-
tem. The idea of simulated tempering can be readily ex-
tended to other parameters as in the expanded ensemble
method �2� or the simulated scaling method �3�. We will
collectively refer to these methods as the serial generalized
ensemble method �GEM�.

A successful application of serial GEM typically requires
rapid and uniform exploration of the given ensemble space.
In order to satisfy this criterion, acceptance rates must be not
only high but also symmetric between forward and backward
transitions. This symmetry can be achieved by assigning
weights, that is, by performing weighted sampling of the
ensemble space. The weights that yield symmetric accep-
tance rates are in fact determined by the relative free energies
of the ensembles. Thus, we will refer to such weights as
free-energy weights. Symmetric acceptance rates, however,
do not necessarily lead to rapid sampling. To achieve rapid
sampling of the ensemble space through high acceptance
rates, we need to choose ensembles appropriately so that
neighboring ensembles overlap significantly.

A few years after the emergence of simulated tempering,
researchers developed parallel versions �4–7�, known as par-
allel tempering or replica exchange. We will refer to these
methods as parallel GEM. Because it does not require
weights, parallel GEM has been quite popular, especially in
molecular simulations. Parallel GEM, on the other hand,
needs many computing nodes and frequent communication
among them. Thus, parallel GEM is not quite suitable for
certain computing environments such as distributed comput-
ing, which was the motivation for the recent effort to develop
a serial variant of replica exchange �8�.

Mitsutake and Okamoto �9� compared the serial and par-
allel algorithms in a tempering simulation of a peptide and

found that simulated tempering has higher acceptance rates
than does parallel tempering. In other words, their results
suggest that, given the same set of ensembles, serial GEM
tends to explore the ensemble space more rapidly, which can
be a significant advantage if it turns out to be generally true.
For the determination of weights in simulated tempering,
they propose to use a short, initial parallel tempering run
�9,10�. More recently, Park and Pande �11� proposed an even
simpler method of weight determination based on average
energies and demonstrated its effectiveness in a simulation of
a peptide in an explicit solvent.

In this paper, we address two issues. First, we derive a
cumulant approximation for free-energy weights �Sec. III�.
This leads to a systematic understanding of the weight deter-
mination method of Park and Pande �11�, which was origi-
nally derived based on a heuristic argument, and to an expla-
nation why such a simple method is so effective. Second, we
derive general formulas for acceptance rates of serial and
parallel GEM and prove that, with free-energy weights, serial
GEM always has higher acceptance rates �Sec. IV�. As it
turns out, these two issues are closely related, not only be-
cause of the link between weights and acceptance rates, but
also because the duality between forward and backward tran-
sitions is at the heart of both issues. We start by reviewing
the serial and parallel algorithms of GEM.

II. GENERALIZED ENSEMBLE METHOD

A generalized ensemble refers to a set of ensembles each
associated with a different reduced Hamiltonian1 hn�x� and
the corresponding partition function

Zn =� dx exp�− hn�x�� , �1�

where x denotes a microstate of the system and n=1, . . . ,K,
with K being the number of ensembles in the generalized
ensemble. Let us list a few examples. Simulated tempering
deals with a generalized ensemble with respect to tempera-
ture,
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1We use terms such as reduced Hamiltonian and reduced free
energy to denote quantities that have been divided by kBT.
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hn�x� = �nH�x� , �2a�

where �n=1 /kBTn is the nth inverse temperature and H is the
original Hamiltonian of the system. We can also construct a
generalized ensemble for pressure,

hn�x� = ��H�x� + PnV�x�� , �2b�

where Pn is the pressure of the nth ensemble and V�x� is the
volume. When we want to calculate free energy as a function
of a parameter �, a generalized ensemble with respect to �
can be useful,

hn�x� = �H�x,�n� . �2c�

It is also possible to construct a generalized ensemble for
multiple parameters; for instance, we can combine the above
three cases into

hn�x� = �n�H�x,�n� + PnV�x�� . �2d�

In this paper, we adhere to the most general context without
specifying any form of hn�x�, except when we discuss par-
ticulars of simulated tempering �Eq. �2a�� and the free-
energy calculation �Eq. �2c��.

The idea of GEM is to enhance the sampling of mi-
crostates by allowing the system to explore all of the given
ensembles. This is achieved by means of a random walk on
the ensemble space �serial GEM� or exchanges of ensembles
�parallel GEM�. Below we describe these two algorithms.

A. Serial algorithm

Given K different ensembles, a generalized Hamiltonian
for serial GEM is defined as

HS�x,n� = hn�x� − gn, �3�

where n=1, . . . ,K. The generalized partition function is then
given as

ZS = �
n=1

K � dx exp�− HS�x,n�� = �
n=1

K

Znegn. �4�

We use the superscript S to denote the serial algorithm. In
this generalized ensemble, the nth ensemble is weighted by
egn; gn is the logarithmic weight, but we call it the weight for
simplicity.

With the generalized Hamiltonian of Eq. �3�, a serial
GEM simulation is performed as follows �1,2�. A simulation
is started in one of the K ensembles, and at regular intervals
a transition is attempted to a randomly chosen ensemble.2

Transitions are accepted according to the Metropolis crite-
rion �12�; a transition from the mth to the nth ensemble,
when the system is at microstate x, is accepted with prob-
ability

Am→n
S �x� = min�1,exp�− �Hm→n

S �x��� , �5�

where

�Hm→n
S �x� = hn�x� − hm�x� − �gn − gm� . �6�

Notice that adding a constant to the weights has no effect;
only the relative weights �differences of weights� matter.

In serial GEM, a random walk is performed on the en-
semble space. The frequency that the nth ensemble is visited,
as can be seen from Eq. �4�, is proportional to Znegn. There-
fore, a uniform sampling of ensembles is obtained if and
only if

gn = fn + const, �7�

where fn is the reduced free energy of the nth ensemble

fn = − ln Zn. �8�

The presence of an arbitrary constant means that the weights
and the reduced free energies are equal up to an additive
constant. The weights that satisfy this property will be re-
ferred to as the free-energy weights and will be denoted by
ĝn.

In a free-energy calculation with respect to a parameter �
�Eq. �2c��, the reduced free energy fn is related to the free
energy Fn=−kBT ln Zn by fn=�Fn. Thus, the relative reduced
free energy fn− fm is proportional to the relative free energy
Fn−Fm, and finding the free-energy weights is equivalent to
calculating the free-energy profile for �. The free-energy pro-
file, therefore, naturally comes out of a serial GEM simula-
tion with respect to �.

B. Parallel algorithm

In parallel GEM, a generalized Hamiltonian is defined for
a set of replicas,

HP�x� = �
n=1

K

hn�xn� , �9�

where x : = �x1 , . . . ,xK� denotes microstates of the replicas.
The generalized partition function is then given as

ZP =� dx exp�− HP�x�� = 	
n=1

K

Zn. �10�

The superscript P denotes the parallel algorithm.
A parallel GEM simulation proceeds as follows �4,5�. A

set of replicas is simulated in parallel, one replica for each
ensemble. At regular intervals, an exchange is attempted be-
tween a chosen pair of ensembles.3 Exchanges are accepted
according to the Metropolis criterion �12�; an exchange be-
tween the mth and the nth ensemble is accepted with prob-
ability

Am↔n
P �x� = min�1,exp�− �Hm↔n

P �x��� , �11�

where

�Hm↔n
P �x� = hm�xn� + hn�xm� − hm�xm� − hn�xn� . �12�

In this algorithm, no weighting is needed because the sam-
pling of ensembles is already uniform; at any instant there is
one replica for each ensemble.

2Typically, one allows nearest-neighbor transitions only. 3Typically, one allows nearest-neighbor exchanges only.
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III. CUMULANT APPROXIMATION FOR WEIGHTS

In this section, we derive an approximate formula for
free-energy weights from the cumulant expansion of reduced
free energies and discuss the validity of the approximation in
the context of simulated tempering and free-energy calcula-
tions. This section, therefore, concerns only the serial GEM,
in which the weight is a relevant concept. Since transitions
take place pairwise, namely from one ensemble to another,
what we need is the relative weights between pairs of en-
sembles for which transitions are allowed. Therefore, with-
out loss of generality, we consider transitions between en-
sembles 1 and 2.

As shown in Eq. �7�, uniform sampling of the two en-
sembles is obtained with

�ĝ = �f , �13�

where �ĝ : = ĝ2− ĝ1 and �f : = f2− f1. The relative reduced
free energy �f can be written as

�f = − ln
e−�h�1, �14�

where �h : =h2−h1 and 
¯�1 denotes an average over en-
semble 1. This is known as the free-energy perturbation for-
mula �13� and is a special case of Jarzynski’s equality �14�.
The right-hand side can be expanded in terms of cumulants,

�f = − �
k=1

�
�− 1�k

k!
Q1

k��h� = 
�h�1 −
1

2
var1��h� + ¯ ,

�15�

where Q1
k��h� is the kth-order cumulant of �h over ensemble

1. This represents an expansion of �f with respect to en-
semble 1. Similarly, �f can also be written in terms of en-
semble 2,

�f = ln
e�h�2, �16�

which can be expanded as

�f = �
k=1

�
1

k!
Q2

k��h� = 
�h�2 +
1

2
var2��h� + ¯ . �17�

Symmetrizing Eqs. �15� and �17� and using Eq. �13�, we find

�ĝ =
1

2
�
�h�1 + 
�h�2� +

1

4
�var2��h� − var1��h�� + ¯ ,

�18�

which, upon truncation, can be used for approximate estima-
tion of free-energy weights. This formula may be considered
a cumulant expansion of Bennett’s acceptance ratio method
�15�.

The effectiveness of this approximation scheme depends
on whether we can truncate the cumulant expansions, Eqs.
�15� and �17�, at a low order without losing much accuracy.
Cumulant expansion has been discussed previously in the
context of Jarzynski’s equality �14,16,17�. If the distribution
in question is nearly Gaussian, cumulant expansion generally
leads to a good approximation. One complication, however,
is that the exponential average may be dominated by a dis-

tant tail region of the distribution. In such a case, cumulant
expansion may yield a poor approximation if the distribution
is far from Gaussian in the region that dominates the expo-
nential average, no matter how close it is to Gaussian in the
central region.

In the present case, there are two relevant distributions: �1
and �2, the distributions of �h over ensemble 1 and 2, re-
spectively. These two distributions are not independent. In
fact, one completely determines the other because they are
related by

�1��� =
1

Z1
� dxe−h1�x��„�h�x� − �…

=
e−�f

Z2
� dxe−h2�x�+��„�h�x� − �… = e�−�f�2��� ,

�19�

which is a special case of Crooks’ fluctuation theorem �18�.
This duality implies that �1��� and �2���, where they are
nonzero, intersect at a single point �=�f . And, by applying
Jensen’s inequality to Eqs. �14� and �16�, we find that

�h�2	�f 	 
�h�1. Thus, the two distributions must be situ-
ated as shown schematically in Fig. 1. In Sec. IV, we show
that the acceptance rate of serial GEM is identical to the area
of overlap between �1 and �2.

These properties of �1 and �2 have important implications
for the validity of the cumulant approximation for �ĝ. Since
�1���e−� is proportional to �2���, the region that dominates
the exponential average 
e−�h�1 coincides with the central
region of �2. Similarly, 
e�h�2 is dominated by the central
region of �1. �This has been discussed by Jarzynski �19� in a
more general context.� Now, since the overlap determines the
acceptance rate, the central regions of �1 and �2 cannot be far
apart unless the two ensembles have been chosen so poorly
as to yield very low acceptance rates. In other words, the
aforementioned situation in which an exponential average is
dominated by a distant tail region will not occur as long as
we ensure �e.g., by adding intermediate ensembles if neces-
sary� that reasonable acceptance rates are obtained.

In simulated tempering, �h�x�=��H�x�, where H�x� is
the original Hamiltonian of the system and �� : =�2−�1.
The cumulant approximation of Eq. �18� thus becomes

FIG. 1. Schematic diagram of �1 and �2, the distributions of �h
over ensemble 1 and 2. The two distributions intersect at a single
point, �f . As shown in Sec. IV, the acceptance rate of serial GEM is
identical to the shaded area of overlap.
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�ĝ =
��

2
�
H�1 + 
H�2� +

��2

4
�var2�H� − var1�H�� + ¯ .

�20�

The first term is O����, but the second term is O���3� be-
cause var2�H�−var1�H� is O����; the absence of O���2�
terms is a consequence of the symmetrization of Eqs. �15�
and �17�. If we keep only the first term, we recover the
method of Ref. �11�, which was originally derived based on a
heuristic argument of detailed balance. When the system
contains many degrees of freedom, the distribution of H is
likely to be nearly Gaussian at least in its central region. In
such cases, assuming that there is significant overlap be-
tween the distributions of H at the two temperatures, the
cumulant approximation is expected to be excellent, as was
demonstrated in Ref. �11�. Inclusion of higher orders in Eq.
�20� could improve the estimate of �ĝ, but it is generally
unnecessary if weights are to be adjusted through adaptive
weighting.

The situation is not quite the same in free-energy calcula-
tions where �h�x�=��H�x ,�2�−H�x ,�1��. Depending on
how the parameter � is coupled to the system, �h may or
may not contain a significant portion of the system’s degrees
of freedom. Consequently, the preceding argument does not
always apply in free-energy calculations. When �h contains
only a small number of degrees of freedom, its distribution
may not be close to Gaussian, and the higher orders of the
cumulant expansion may be necessary for accurate estima-
tion of free-energy weights. We note, however, that when �h
contains a small number of degrees of freedom, �f between
neighboring ensembles tends to be fairly small, and adaptive
weighting can readily find the free-energy weights even start-
ing with a naive initial guess, for example, gn=0 �20�.

To summarize, when �h contains a large number of de-
grees of freedom, �f between neighboring ensembles can be
large, and without good initial weights adaptive weighting
will take a very long time to find the free-energy weights.
But, since the distribution of �h is close to Gaussian, we can
indeed obtain good initial weights using the cumulant ap-
proximation. When �h contains a small number of degrees
of freedom, the distribution of �h may not be close to Gauss-
ian. But, �f between neighboring ensembles is small, and the
convergence of weights through adaptive weighting is fast
even without good initial weights.

IV. ACCEPTANCE RATES

A successful GEM simulation requires rapid exploration
of the given ensemble space, which means high acceptance
rates for transition attempts in serial GEM and exchange at-
tempts in parallel GEM. In this section, we derive general
formulas for the acceptance rates in serial and parallel GEM
and address the question of which algorithm has higher ac-
ceptance rates. As in Sec. III, we focus on two ensembles, 1
and 2, without loss of generality.

A. Serial GEM

Transition attempts in serial GEM are accepted with the
probability of Eq. �5�, expressed as a function of microstate

x. Thus, the average acceptance rate for the 1→2 transition
is


AS�1→2 =� dx
e−h1�x�

Z1
min�1,e−�h�x�+�g�

= �
−

dx
e−h1�x�

Z1
+ �

+
dx

e−h2�x�+�g

Z1
, �21�

where �− and �+ denote integrals restricted to the regions
�h�x�
�g and �h�x���g, respectively. This expression
can be rewritten in terms of �1 and �2,


AS�1→2 = �
−�

�g

d��1��� +
e�g

e�f�
�g

�

d��2��� . �22�

The average acceptance rate for the backward transition can
be written similarly,


AS�2→1 =
e�f

e�g�
−�

�g

d��1��� + �
�g

�

d��2��� . �23�

For an arbitrary choice of �g, 
AS�1→2 and 
AS�2→1 are dif-
ferent. Only with the choice �ĝ=�f do they become identi-
cal,


ÂS� = �
−�

�f

d��1��� + �
�f

�

d��2��� , �24�

where the caret indicates the use of free-energy weights. The
subscripts 1→2 and 2→1 have been dropped because the
acceptance rate now is the same in both directions. Since

�1��� and �2��� intersect at a single point �=�f , 
ÂS� is iden-
tical to the area of overlap between the two distributions
�Fig. 1�. For reasonable acceptance rates, significant overlap
between �1 and �2 is required.

B. Parallel GEM

In parallel GEM, exchange attempts are accepted with the
probability given in Eq. �11�. Therefore, the average accep-
tance rate for the 1↔2 exchange is


AP� =� dx1dx2
e−h1�x1�

Z1

e−h2�x2�

Z2
min1,

e�h�x2�

e�h�x1��
= �

�

dx1dx2
e−h1�x1�

Z1

e−h2�x2�

Z2
+ �

†
dx1dx2

e−h1�x2�

Z1

e−h2�x1�

Z2
.

�25�

The subscript 1↔2 has been dropped because it is the only
exchange possible when we consider two ensembles. The
integrals �� and �† are restricted to the regions �h�x1�

�h�x2� and �h�x1���h�x2�, respectively. The two inte-
grals are in fact identical, as we can verify by swapping the
dummy variables x1 and x2,


AP� = 2�
�

dx1dx2
e−h1�x1�

Z1

e−h2�x2�

Z2
. �26�

Using �1 and �2, we rewrite this as
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AP� = 2�
−�

�

d�2�
−�

�2

d�1�1��1��2��2� . �27�

Geometrical interpretation of the acceptance rate is not as
straightforward as in serial GEM, but it is clear that parallel
GEM also requires significant overlap between �1 and �2 for
reasonable acceptance rates.

C. Comparison

We now prove 
ÂS�� 
AP�. To compare Eq. �24� �a single-
integral form� with Eq. �27� �a double-integral form�, we
convert Eq. �24� into a double-integral form,


ÂS� = �
−�

�f

d�1�1��1� + �
�f

�

d�2�2��2�

= �
−�

�

d�2�
−�

�f

d�1�1��1��2��2�

+ �
�f

�

d�2�
−�

�

d�1�1��1��2��2� . �28�

We have thus expressed both quantities in terms of double
integrals of �1��1��2��2�. Let us examine what regions of the
��1 ,�2� plane each quantity covers. As illustrated in Fig. 2,
three lines, �1=�f , �2=�f , and �1=�2, divide the plane into
six regions, labeled I through VI. The first term of Eq. �28�
covers III, IV, and V, and the second term covers I, II, and
III,


ÂS� = ��
I

+ �
II

+ 2�
III

+ �
IV

+ �
V
�dR , �29�

where dR : =d�1d�2�1��1��2��2�. Equation �27� can be written
as


AP� = 2��
II

+ �
III

+ �
IV
�dR . �30�

The difference between the two quantities is


ÂS� − 
AP� = ��
I

− �
II

− �
IV

+ �
V
�dR . �31�

Taking advantage of the symmetry between regions I and II
�and regions IV and V� with respect to the reflection in the

line �1=�2, we compare �IdR and �IIdR �and �IVdR and
�VdR�. By swapping the dummy variables �1 and �2, �IdR
can be turned into an integral over II,

�
I
dR = �

II
d�1d�2�1��2��2��1� . �32�

Then, we use the duality of Eq. �19� to obtain

�
I
dR = �

II
d�1d�2�1��1��2��2�e�2−�1

� �
II

d�1d�2�1��1��2��2� = �
II

dR , �33�

where the inequality holds because e�2−�1 �1 in region II. It
can be shown similarly that

�
IV

dR 	 �
V

dR . �34�

From Eqs. �31�, �33�, and �34�, we find


ÂS� � 
AP� , �35�

which completes the proof.

The actual difference between 
ÂS� and 
AP� depends on
the specific forms of �1 and �2. As a typical example, let us
consider the cases where they are Gaussian. Suppose �1 is
given as

�1��� =
1

�2�
exp�−

�� − ��2

22 � . �36�

Then, from Eqs. �14� and �19� we find

�f = � − 2/2 �37�

and

�2��� =
1

�2�
exp�−

�� − � + 2�2

22 � . �38�

That is, if �1 is a Gaussian distribution with mean � and
variance 2, then �2 must be another Gaussian distribution
with the mean shifted by −2 and the same variance.

Plotted in Fig. 3 are the acceptance rates, 
ÂS� �Eq. �24��
and 
AP� �Eq. �27��, calculated with these Gaussian distribu-
tions. Notice that since � has no effect on the acceptance
rates,  is the only relevant parameter. When =0, two en-
sembles are identical, and both acceptance rates are unity. As
 increases, the overlap between �1 and �2 decreases; both

acceptance rates fall toward zero, but their ratio 
ÂS� / 
AP�
diverges to infinity. In practical applications of GEM, one
chooses temperatures �or ensembles in general� such that the
acceptance rate is not too low, typically between 30% and
50%. If  in this Gaussian example is chosen according to
this criterion, serial GEM has about 20% to 50% higher ac-
ceptance rates. This may appear to be only a moderate in-
crease. If we consider, however, the time scale of mixing on
the ensemble space such as the first passage time between the
lowest and the highest temperatures, even a moderate in-

FIG. 2. Three lines, �1=�f , �2=�f , and �1=�2, divide the
��1 ,�2� plane into six regions.
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crease in the acceptance rate can be a significant advantage.
Having higher acceptance rates also means that a certain de-
sired acceptance rate can be achieved with fewer tempera-
tures �or fewer ensembles in general�.

V. CONCLUSIONS

In this paper, we have derived a cumulant approximation
for free-energy weights in serial GEM and explained why

such a simple method can be so effective, especially in simu-
lated tempering, as was demonstrated by Park and Pande
�11� in an all-atom simulation of a peptide in an explicit
solvent. We have also derived general formulas for accep-
tance rates of serial and parallel GEM and proved that, with
free-energy weights, serial GEM always has higher accep-
tance rates. This solidifies the empirical findings of Mit-
sutake and Okamoto �9�. The duality between forward and
backward transitions, which plays a crucial role in these deri-
vations, seems to be a key to deeper understanding of the
statistical mechanics of GEM.

In contrast to the recent popularity of parallel GEM �e.g.,
parallel tempering�, serial GEM �e.g., simulated tempering�
has gained relatively little attention, because of the difficulty
of weight determination. This difficulty seems to be greatly
reduced now because free-energy weights can be readily ob-
tained by the cumulant approximation combined with adap-
tive weighting schemes. In addition to being robust in vari-
ous computing environments, serial GEM has the advantage
of having higher acceptance rates, as we have proved here.
The acceptance rate is an important criterion of efficiency,
but certainly not the only one. It remains to be seen how the
increase in the acceptance rate affects the sampling of mi-
crostates and the convergence of various estimates. The an-
swers are likely to be system dependent and require further
comparative study of the serial and parallel algorithms.
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FIG. 3. Acceptance rates, assuming Gaussian distributions. Top:


ÂS� for the serial GEM �solid line� and 
AP� for the parallel GEM
�dashed line�. Bottom: The rate between the two acceptance rates.
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